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COATINGS AND CATHODIC PROTECTION
OF PILING IN SEAWATER:

RESULTS OF 10-YEAR EXPOSURE AT
LACOSTA ISLAND, FL

' INTRODUCTION

Background .

The Directorate of Civil Works, Office of the Chief
of Engineers, has jurisdiction over many coastal struc-
tures such as bridges and buildings which are supported
oii pilings. The design life of these structures can range
from a few years to 100 years. Steel pipes and steel
H-piling have been used most often for foundations in
coastal areas, but prestressed concrete piles also have
been tried.

Coating systems are available to protect steel piling.
And in brackish water or saltwater applications, where
the life of even the best available coatings can be
somewhat limited, cathodic protection can provide

supplemental protection. In addition, the chemical -

industry continually develops new coatings which may
be used in seawater. Zinc-rich primers and Rsme-
sprayed metallic undercoats can also improve the
performance of coating systems.!

The designers of coastal structures can choose
from many protective coating systems for steel piling.
For rapid screening of these coatings and primers,
nondestructive measurement techniques capable of
predicting long-life (50-year) performance based on
tests of shorter duration are extremely valuable.
However, such tests performed in the laboratory,
though indicative of coating performance, do not
simulate actual field exposures. Field tests at various
geographic locations are necessary because environ-
mental effects such as marine growth, temperature,
and tidal conditions are important parameters which
cannot be simulated easily in the laboratory.

In response to this prob'sm, the U.S. Amy Corps
of Engineers and the National Bureau of Standards
(NBS) began a field study of piling corrosion in 1967,
when 31 sets of piles (three identical piles per set) were

YA. Kumar and D. Wittmer, “Coatings and Cathodic
Protection of Pilings in Seawater: Results of 5-Year Exposure,”
Materials Performance, Vol 18, No. 12 (1979), p 9-19.

installed near Dam Neck, VA. Every 5 years, one
row of piling was to be extracted and examined for
corrosion damage; all piles have now been removed
and are being evaluated by NBS.

To determine the effects of geogrsphy and tem-
perature, the Coastal Engineering Research Center
(CERC) selected two more sites, Buzzards Bay, MA,
and LaCosta Island, FL. The U.S. Army Construction
Engineering Research Laboratory (CERL) was respon-
sible for installing piling at Buzzards Bay in October
1974, and conducted the first inspection in July
19752 Annual inspections of the piles have been
conducted since then® The first set of piling was
extracted in 1979 and evaluated.* The Buzzards Bay
phase of the study will be completed in 1989.

The installation of 31 sets of piling (three per set)
at LaCosta Island was completed in January 1971, and
inspections have been conducted since then. CERC
evalusted the pilings through June 1974, when the
inspection responsibility was transferred to CERL.
One row of piling was removed in 1976; the results of
the S-year inspection have been previously published.
The LaCosta Istand piles were extracted and evaluated
in 1981, as this report explains.

When the Dam Neck, Buzzards Bay, and LaCosta
Island studies are finished, the data from all three sites
will be analyzed to draw conclusions and develop
recommendations about pile coatings.

Objective

The objective of this report is to assess (1) the rate
of corrosion of bare steel with and without cathodic
protection, and (2) the effectiveness of various com-
mercially av..iable coating systems in preventing cor-
rosion of steel piles in seawater at LaCosta Island, FL.

3A. Kumar and C. Hahin, First Annual Inspection of
Buzzards Bey Pilings, Technical Report M-172/ADA024381
(CERL, 1976).

3F. Kearney, Corrosion of Steel Pllings in Seawater: Buz-
zards Bay-1975-1978, Interim Report M-275/ADA078626
(CERL, 1979).

4A. Kumar, R. Lampo, A. Beitsiman, Corrodon Control
of Pllings in Seawater: Buzzards Bey, Technical Report M-286/
ADA097086 (CERL, 1981).

SA. Kumar and D. Wittmer, “Coatings and Cathodic’
Protection of Pilings in Seawater: Results of 5-Year Exposure,™
Materigls Performance, Vol 18, No. 12 (1979), p 9-19.




Approasch

Twenty-nine sets (two pilings per set) of American
Society for Testing and Materials (ASTM) A36 or
ASTM 690 steel H-piles were exposed in seawater for
10 years. Most of the piles were coated or had cathodic
protection. The piles were pulled out and inspected
visually. CERL then established performance ratings
for the following coatings: organic, metal-filled, or-
ganic over metal-filled, metallic, organic over metallic,
and organic with cathodic protection.

Mode of Technology Transfer

The information in this study will be incorporated
into Corps of Eagineers Guide Specification CW-09940,
Painting: Hydraulic Structures and Appurtenant Works;
Technical Manual (TM) S-811-4, Electrical Design:
Corrosion Control; and Engineer Manual (EM) 1110-2-
3400, Puinting: New Construction and Maintenance.

2 LACOSTA ISLAND FIELD STUDY

Test Site

Figure 1 shows the LaCosta Island test site. The
yearly surfsce water temperature ranges from 55° to
90°F (13° to 32°C), with an approximate mean yearly
temperature of 75°F (24°C). The salinity fluctuation
due to tidal flushing at the site is approximately 30
parts per thousand at low tide to 36 parts per thousand
at high tide. Mean tide level at the site is 1.3 ft .>.4 m),
with a spring tide range of 2.6 ft (0.8 m). Wave action
is light, and the bottom material is composed of
approximately equal proportions by weight of silica
sand and shell.¢

Test Piling

The test piles included H- and pipe-piling made of
either American Society for Testing and Materials
(ASTM) 436 or ASTM 690 (mariner steel). The steel
H-piles were 6 in. x 6 in. x 30 ft (152 mm x 152 mm
x 9.2 m) and weighed 25 1b/ft (37.2 kg/m). Stainless
steel rods were welded between the inside flanges of
each pile so that electrical contact could be made
for electrochemical measurements. The piles were

SA. Kumar and D. Wittmer, “Coatings and Cathodic
Protection of Pilings in Seawater: Rosults of 5-Year Exposure.”

Figure 1. LaCosta Island test site (metric conversion
factor: 1 nautical mile = 1.852 km).

identified by raised weld beads near the top. Six
prestressed concrete piles were also installed.

Figures 2 and 3 show the detail sections of the H-
and pipe-piling. Some piles were installed without
coatings or sacrificial anodes, while others had both
coatings and cathodic protection. Table 1 is a complete
listing of the coatings used and their sources. Some of
the protective coating systems included in the LaCosta
Island study are the same as those tested at the Dam
Neck and Buzzards Bay sites. The systems include
organic, organic with cathodic protection, metallic,
metal-filled organic, and organic over metal-filled
coatings. These were applied after the base metal was
sandblasted to near “white metal” according to Steel
Structures Painting Council (SSPC) Specification
SSPC-SP-10-63T.

The piles were water-jetted into place in three rows
parallel to the shoreline (as shown in Figures 4 and §).
The rows were designated A, B, and C, with A being
nearest the beach and C farthest. Of the 31 sets of
three piles, three were bare carbon or mariner steel,
two were prestressed concrete, and the rest were
coated steel. One set of coated steel pilings was cathod-
ically protected. The coated piles in row A were
completely coated; those in row B also were entirely
coated, except for seven 6-in. x 14in. (152 mm x 25mm)




System Type of
Piling*

3 ¥
2 ? No.
! - 1

2

10

*Steel H-piles are 30-ft (9.1 m) lengths of 6 in. x 6 in. (152 mm x 152 mm) wide flange (25 1b/ft [37.2 kg/ml) mild carbon steel.
Systems 23, 24, and 25 are mariner stoel H piles. Systems 26, 27, and 28 are pipe piles, mild carbon steel, § in. (152 mm) diameter,

T T T =

Table 1
Test Pile Details, LaCosta Island Test Site

Description of Coating System

Bare carbon steel
Bare carbon stee{ with zinc anodes
Bare carbon steel with aluminum anodes
Coal-tar epoxy

Formula C-200
Coal-tar epoxy with zinc anodes

Formula C-200, polyamide-cured

Coal-tar epoxy, amine-cured
Tarset

Coal-tar epoxy, aluminum-oxide-armored
at Formula C-200

Formula C-200 + aluminum oxide
(No. 30 grit) broadcast into
wet final coat

Aluminum-pigmented epoxy-tar
Carbomastic #3

Carbomastic #12-14

Carbomastic #5-140

Coal-tar epoxy

U.S.S. epoxy primer

Tarset Standard

Tarset Standard

Epoxy over inorganic ceramic
Plag-Chem Zinc-ite G primer
Plas-Chem's Ceram-ite #101

Plas-Chem’s 2140 Z high-build epoxy

No.
of
Coats

Dry Coating
Thickness,
mils*® (mm)

16-20
(0.41-0.51)

16-20
(041-0.51)

16-20
(041-0.51)

16-20
(0.41-0.51)

10-11
(0.25-0.28)

8-9
(0.20-0.23)
7-8
(0.18-0.20)
4
(0.10)

3
(0.08)
8-10
(0.20-0.25)
8-10
(0.20-0.25)

34
(0.8-0.10)
5-6
(0.13-0.15)
7-8

(0.18-0.20)

Coating
Source

United States
Steel (U.S.S.)
Chemicals

U.S.S.
Chemicals

USS.
Chemicals

U.S.S.
Chemicals

Carboline
Co.

USS.
Chemicals

Plas-Chem
Corp:

schedule 40, 0.280 in. (0.7 mm) wall thickness. Prestressed concrete piles are stated in this column.
**Film thickness tolerance per coat may be plus or minus 15 percent of given thickness per coat, except where a range is given.

General Notes

Alt surfaces were blast-cleaned ro near-white metal before coating. Systems 28 and 29 were supplied in the near-white condition.
Specimens were numbered A, B, or C, which corresponded to their position (A faced the shore, B in the center, and C faced the Gulf

of Mexico), and had a numeric prefix which designated the way they were coated.

Remarks

2 anodes

2 anodes

2 anodes

(Third coat +
garnet to be
applied between 11
and 17 ft (3.3
and 5.2 m) from
bottom of pile




- PR

. ' System Type of
. No, Piling
11 H
i
i
12 H
13 H
14 H
15 H
16 H
17 H
" 18 H
19 H

Table 1 (Cont'd)

Description of Coating System

Epoxy over inorganic zinc primer
Zincor #11 primer

Chem-Pon 2310X Red

Saran
Washcoat primer, MIL-P-15328B
(Formula 117)
Formula 113/54; MIL-L-18389

Aluminum, flame-sprayed (wire)

Aluminum, flame-sprayed (wire)
vinyl topcoat
Flame-sprayed aluminum (wire)

Washcoat primer, Formula 117,
MIL-P-15328B
Alum, vinyl, Metcoscal-A V (Alum, Vinyl)

Zinc, flame-sprayed, with saran topcoat
Steel wire flash bond coat
Flame-sprayed zinc (wire)
Saran, Formula 113/54, alternate

white and orange; finish coat, white

Zinc, flame-sprayed, with Navy vinyl
topcoat, flame-sprayed zinc (wire)
Washcoat primer, MIL-P-15328B

Vinyl reddead, Formula 119,
MIL-P-15929

Phenolic Mastic
_ Phenoline 300 (orange)

Phenoline 300 (gray) finish coat
Vinyl over inorganic zincrich

U.S.S. zinc-rich No. 220

U.S.S. high-build vinyl
Coal-tar epoxy over organic zinc-tich
U.S.8. zinc-rich epoxy No. 110
Coal-tar epoxy, C-200

Coats

10

Dry Coating
Thickness,

mils (mm)

1-1.5
(0.03-0.04)
8-9
(0.20-0.23)

04
(0.01)
6-7
(0.15~0.18)

6
(0.15)

6
0.15)
04
(0.01)
2
(0.05)

1
063)
6

(0.15)
6-7
(0.15-0.18)

6
(0.15)
04
0.01)
4-5
(0.10~0.13)

(0.20)
(0.20)

(0.08)
7
(0.18)

(0.08)
12
(0.30)

Coating

Corp.

Navy stock

Metalweld,
Metco, or
other

Metalweld,

Metco, or
other

Metco, Inc.

Metco, Metal-
weld, or other

Navy stock

Metco, Metal-
weld, or other
Navy stock

Carbolinc
Co.

U.S.S.
Chemicals

us.Ss.
Chemicals

Remarks

Alternate coat
white and orange

Steel wire flash
bonding coat,
1mil (003 =)

Steei i
bonding
1 mil (0.0

Steel wire flash
bonding coat,
1 mil (0.03 mm)
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22

23

24

25

27

28

29

30
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Pipe

Table 1 (Cont'd)

Description of Coating System

Epoxy-polyamide over inorganic zinc-rich
Carbozine #11

High-build epoxy polyamide 190 HB
Epoxy-tar over inorganic zinc-rich
Carbozine #11
Carbomastic #14
Vinyl mastic over inorganic zinc-rich
Dimetcote #3+D3 Curing Solution
#54 Tie Coat

Vinylmastic #87

Bare mariner steel
Bare mariner steel with zinc anodes

Coal-tar epoxy on mariner steel
Formula C-200

Bare carbon steel

Coal-tar epoxy
Formula C-200

Coal-tar epoxy, garnet-armored at mud line
Formula C-200

Formula C-200 + aluminum oxide
(#30 grit) broadcast into wet final coat

Polyester glassflake, Carboglas 1601,
spray grade

Prestressed concrete
10 in.
(254 mm)
square

Prestressed concrete
10 in.
(254 mm)
octagon

11

No.
of

Coats

Dry Coating
Thickness,
mils (mm)

(0.08)
(0.30)

(0.08)

(0.20)

(0.08)
(0.03)

0.25)

16-20
(0.41-0.51)

16-20
(0.41-0.51)

16-20
(041-0.51)
10
(0.25)

40
(1.02)

Coating

Source

Carboline
Co.

Carboline
Co.

Amercoat
Corp.

U.S.S.
Chemicals

U.S.S.
Chemicals

US.S.
Chemicals

Carboline
Co.

Remarks

Curing solutic ..

to be removed

by freshwater
wash

2 anodes

Third coat and
aluminum rvide
to be applied
beiween 11 and 17
ft (3.3and 5.2 m)
from bottom of pile

Blast material to
provide 3 to 4 mil
(0.08 to 0.10 mm)

surface profile
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windows at 2, 7, 14, 17, 20, 22, and 27 ft (0.6, 2.1,
43,52,6.1, 6.7, and 8.2 m) from the bottom of the
pile on the surface facing the beach. The C piles,
removed in 1976 after S-years’ exposure, were com-
pletely coated except for the embedded zone.*

The sacrificial anodes for the cathodically protected
piling were mounted near the sand-swept zone. The
zinc anodes were 4 in. x 4 in. x 36 in. (101 mm x
101 mm x 914 mm) and weighed about 150 Ib (68.0
kg) when new; and aluminum anodes were 4 in. x 4 in.
x 38 in. (101 mm x 101 mm x 967 mm) and weighed
60 ib (27.2 kg) when new. Two zinc or aluminum
anodes were installed on each pile to be cathodically
protected.

Annual Inspection

After placement in 1971, the piling had five annual
inspections  consisting of visual observations and
electrochemical measurements. From 1977 to 1980,
coating performance was inspected only visually. In
1981, CERL performed electrochemical measurements
and a visual inspection, including a complete evaluation
of coating deterioration in accordance with ASTM
Standard Methods for Evaluating Degree of Rusting on
Painted Steel Surfaces (Table 2).

Three types of electrical measurements were taken:
pile corrosion potential, cathodic protection index
(CP1), and polarization. Electrical contact with the
stainless steel rods on the pilings was made with vise
clamps connected to the cable wires. The protection
offered by sacrificial anodes was assessed by pile
potential measurements. A Miller Model M-3D Multi-
meter, or the equivalent, was used to measure the
potential with respect to a copper-copper sulphate
reference immersed in seawater.

The CPl of a coated piling was determined by
forming a galvanic couple between it and a bare pile,
and measuring the potential of the coated pile with
zero applied current. The current was then increased
to lower the initial potential to —0.85 volts (V) for the
coated pile. The current was constantly adjusted to
keep the coated pile at —0.85 V during a 5-minute
period. The initial and final values of the current and

*For this study, each 30-ft (9.1-m) length of piling can be
divided into four zones: the atmospheric zone (0 to 6 ft. or
0 to 18 mm), the immersed zone (6 ft to 17 ft, or 1B m to
5.2 m), the sund=swept zone (17 110 21 ft, or .2 m to 6.4 m),
and the embedded zone (21 1 to 30 1, or 6.4 m to 9.1 m).
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o MmaTER
on P,

S 18a T8A ¢
Py

L1
si)::né;all :were then used to calculate the CPl value \7.—|I||||||||| é

CPl = AV/Al [Eq 1]

K T sn  %on

where AV = change in voltage

LEAD FROM
TEST PILE

Al = current required to shift the voltage.

The corrosion rate measurements were conducted by
Schwerdtfeger and McDorman’s “polarization break”
method, which uses breaks in the anodic and cathodic
polarization curves to identify the corrosion rate by a
caculated corrosion current, Ic." I, can be calculated
from the following relationship, which was derived by

AUX. PILE

LEAD FROM
© AUXILIARY WIRE

TOPRE  CuCuSO,  Cw/CeS0, TO AUX PRE

Py * MILLER -3 PA/VM OR HIOH RESISTANCE VM4, USED FOR HMONTORNG
POTENTIAL/ VOLTAGE OF TEST PILES.

en o

Pearson and confirmed by Holler.® i

)
e 1, +1)

where 1, and I, equal the tangent intersection of
the portions of the anodic and cathodic curves, respec-
tively. These curves were obtained by increasing the
current from zero in small increments at 3-minute
intervals. After each time period, both the current and
the test pile potential (with respect to copper-copper
sulphate reference cell) were noted.

[Eq2]

Figure 6 is the circuit diagram of the instrument
used for the polarization and CPl measurements.

Ten-Year Inspection

Most piles in rows A and B were removed in March
1981 after 10-years’ exposure. All piles were removed
by hooking a crane onto the pull-holes provided. Water
jetting was used to loosen the bottom material around
the piling to prevent damage to the coating systems.
After removal, the piles were transported by barge to
a storage area where they were unloaded onto wood
supports and spaced to allow easy access and room to
turn the piling for ingpection of all surfaces. The piles
were cleaned of guano and marine organisms by

w. 1. Schwerdtfeger and O. N. McDorman, *‘Measurement
of Corrosion Rate of Metal From Its Polarizing Charscter-
istics,” Journal of the Electrochemical Society, Vol 99 (1952),
p 407.

8). M. Pearson, “‘Null’ Methods Applied to Corrosion
Measurements,” Transactions of the Electrochemical Society,
Vol 81 (1942), p 485; H. D. Holler, “Studies on Galvanic
Couples,” Journal of the Electrochemical Society, Vol 97
(1950), p 277.

R MLLER M-3; FOR AUXILIARY PILE VOLTASE

Figure 6. Circuit diagram for measurement of cathodic
protection index and polarization
measurements.

hand-scraping and water wash when necessary. Charts
were drawn to display the corrosion behavior of the
piling (see the appendix), and the coated niles were
rated in accordance with ASTM D 610-68 (Tab'= 2).

The bare stee] piles and the coated steel piles with
cathodic protection had to be sandblasted before their
flange thicknesses could be measured along the length
of each pile and a profile made.

3 RESULTS AND DISCUSSION

Visual Observations of Protactive Coating Systams
Table 3 presents the ASTM D 610-68 visual evalu-
ation results for the coated steel piling after the S- and
10-year exposures. Charts of coating degradation after
10-years’ exposure are shown in the appendix; a brief
description of .the coating systems’ performance is
presented below. (The degradation noted in the piling’s
atmospheric 2one was caused by salt spray.)

1. System 4 was a C-200 coal-tar epoxy coating.
This system showed some rusting in the atmospheric
zone. Rusting and pitting with loss of coating, es-
pecially at the flange, was present in the immersed
zone edge. In the immersed zone, there was attached
marine growth,
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Table 2
Scale and Description of Rust Grades®
SSPC-AST™M
Photographic
Rust Grades** Description Standard

10 No rusting or less than 0.01 percent of surface rusted unnecessary
9 Minute rusting, Jess than 0.03 percent of surface rusted No.9
gese Few isolated rust spots, less than 0.01 percent of surface rusted No. 8
7 Less than 0.3 percent of surface rusted none
[ S Extensive rust spots but less than 1 percent of surface rusted No.6
5 Rusting to the extent of 3 percent of surface rusted none
4+ Rusting to the extent of 10 percent of surface rusted No. 4
3+ Approximately one-sixth of the surface rusted none
2 Approximately one-third of the surface rusted none
i Approxanately one-half of the surface rysted fone

0+ Approximatty 100 percent of the surface rusted unnecessary

*Reprinted, with permission, ‘:om the Annual Book of ASTM Standards. Part #27. Copyright,
American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103,
**Similar to Curopean Scale of Degree of Rusting for Anti-Corrosive Paints (1961) (black and

white).

**2Corresponds to SSPC Initial Surface Conditions (0 to 0.1 percent) and BISRA (British Iron and

Steel Research Association) 0.1 percent.

s*s2Corresponds to SSPC Initial Surface Conditions F (0.1 to 1 percent) and BISRA (1.0 percent).
+Corresponds to SSPC Initial Surface Condition G (1 to 10 percent).
++Rust grades below 4 are of no practical importance in grading performance of paints.
++Corresponds to SSPC Initial Surface Condition H (50 to 100 percent).

2. System 5 was a C-200 coal-tar epoxy/polyamide-
cured coating with zinc anodes. Light rust and scale
were present in atmospheric zone, with some loss of
the coating in the immersed zone.

3. System 6 was a coal-tar epoxy/amine-cured
coating. Severe loss of coating in the immersed zone
occurred. Some rust and scale were in the atmospheric
zone.

4. System 7 was a C-200 coal-tar epoxy coating
with aluminum oxide grit added to the final coat of
C-200 coal-tar epoxy along the mudline. Light rust
and scale were in the atmospheric zone, with some
loss of coating in the immersed zone.

5. System 8 consisted of an aluminum pigmented
epoxy-tar applied over two coats of epoxy tar. There
was light rusting along the flange edges in the atmos-
pheric zone. The immersed zone was severely rusted
and pitted.

6. System 9 was an epoxy primer/coal-tar epoxy.
This coating system was in excellent condition in the
atmospheric zone. There was some rusting of flange
edges in the immersed zone.

7. System 10 was a coating consisting of a zinc-
rich primer, a ceramic intermediate coat, and a high-
build epoxy topcoat. The coating system showed light
staining in both the atmospheric and immersed zones,
but overall was in good condition.

8. System 11 consisted of a zinc rich primer with an
epoxy topcoat. The coating in the immersed and
atmospheric zones was degraded, causing severe rusting
and pitting on the steel piling.

9. System {2 consisted of a washcoat primer with a
saran topcoat. This coating system gave fair protection
in the atmospheric zone, where light rust and scale
were present, but was completely removed in the
immersed zone, where the piling showed rusting
and pitting.

10. System 13 was a flame-sprayed aluminum
coating. Light scale and rusting, present along the
length of the piling, was most severe at the splash
zone, where there was no sacrificial protection.

11. System 14 consisted of a flame-sprayed alumi-
num coating with a vinyl topcost. Staining and rust
were present in the atmospneric zone. The coating was




' Table 3
! Visual Evaluation of Coating Pesformance After S- and 10-Years' Exposure
[
: S-Year Exposure® 10-Year Exposure®®
¢ Zoaes Evaluated Zomes Evalusted
: System System System )
Class Type Number Atmospheric Immersed Atmospheric Immersed
Organic Coal-tar (Tarset) 9 10 8 10 8
Coal-tar/armored 7 6 8 6 7
Coal-tar on mariner 25 9 4 7 3
Coal-tar (Tarset) 6 7 3 6 3
( Coal-tar (C-200) 4 9 4 8 3
Saran 12 10 0 7 0
Phenolic 17 7 8 6 4
Mastic
Polyester 29 10 10 10 10
glars flake,
Carboglas 1601
Metal-filled Aluminum 8 9 3 8 3
pigmented
epoxy-tar
Organic Epoxy over Zn-tich 20 9 6 9 6
over Epoxy/cermmite
metal- Vinyl/inorganic Zn-rich 10 10 9 8 9
filled Coal-tar over Zn-rich 18 10 9 4 6
Epoxy/inorganic Zn-tich 11 6 1 2 0
Epoxy tar/inorganic Za-tich 21 9 1 8 0
Vinyl mastic/inorganic Zn-rich 22 7 2 9 0
Metallic Flame-sprayed, AL 13 7 8 3 ]
Organic Vinyl (Al) 14 8 7 5 7
over Vinyl (Zn) 16 10 8 9 7
metallic Saran (Zn) 15 s 1 S 1
Organic Coal-tar s 10 9 8 9
coating with epoxy with
cathodic zinc anodes
protection

*Row C pilings with seven windows.
*%Row A pilings were compietely coated.
+Vslues refer to rust grades in Table 2.




excellent in the immersed and embedded zones,
indicating that the flame-sprayed aluminum was still
providing sacrificial protection.

12. System 1S was a flame-sprayed zinc coating
with a saran topcoat. Staining and light rust were
present in the atmospheric zone. The saran topcoat
was completely gone from the immersed zone, but the
flame-sprayed zinc still provided protection.

13. System 16 consisted of a flame-sprayed zinc
coating with a vinyl topcoat. Rust was present in the
splash zone. The vinyl topcoat had peeled off in the
immersed zone, and there was some light staining.

14. System 17 was a phenolic mastic coating. Light
rust and staining were present in the atmospheric zone.
Pitting on steel flange edges and severe loss of coating
had occurred in the immersed zone.

15. System 18 consisted of an inorganic zinc-rich
primer with a high-build vinyl topcoat. Scale and rust
were present in the atmospheric zone, and some light
rust and staining had occurred in the immersed zone.

16. System 19 was a coal-tar epoxy with organic
zinc-rich primer. Some rust and blistering were present
in the atmospheric zone. In the immersed zone, there
was severe loss of coating, with rusting and pitting.

17. System 20 consisted of an inorganic zinc-rich
primer with a high-build epoxy-polyamide. Light rust
and scale were present in the tidal zone. Overall, the
coating’s condition was very good.

18. System 21 was an epoxy-tar over an inorganic
zinc-rich primer. Some light rust was present along the
flange edge in the atmospheric zone. There was com-
plete loss of coating in the immersed zone, with severe
rusting and pitting. The coating had blistered in the
embedded zone.

19. System 22 was a vinyl mastic topcoat over an
inorganic zinc-rich primer. Light staining was present
in atmospheric zone; complete loss of coating occurred
in the immersed zone; dense blistering and rusting
were present in the embedded zone.

20. Coating system 25 was a C-200 coal-tar epoxy
on mariner steel (ASTM 619). This coating exhibited
the same characteristics as system 4, which was C-200
on carbon steel A36.
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21. System 29 was a polyester glass flake 40-mils
(1.02 mm) thick. No rust stains were observed in the
tidal and atmospheric zones. The pile was left intact.

Categories of Coatings

For discussion, the protective coating systems used
in this study can be divided into six categories: organic,
organic with cathodic protection, metal-filled, organic
over metal-filled, metallic, and organic over metallic.
The condition of these coating systems after 10-years’
exposure is outlined below.

Organic Coatings (Systems 4,6, 7,9,12,17,27and 29)

In this class of coatings, the polyester glass flake
(System 29) made by Carboline Co. was the top
performer. According to Carboline, this coating resists
“severe chemicals including hypochlorites and free
chlorine. . . .A 40 mil film contains. . .about 160 layers
of Flakeglas making the film very resistant to pene-
tration in many aggressive environments. Tight adhesion
is maintained even after long aging. The coating. . .
[resists] abrasion and impact. The standard system is
two 20 mil coats, spray applied. No primer is required.
Carboglas 1601 SG can be readily applied by con-
ventional spray. Rolling or brushing after application
is not required.”®

Coal-tar epoxy over epoxy primer (System 9)
provided good protection, as did the coal-tar epoxy
with aluminum oxide armor (System 7) and coal-tar
epoxy over mariner steel (System 25). The phenolic
mastic (System 17) offered fair protection, while
C-200 coal-tar epoxy (System 4), Tarset coal-tar
(System 6), and saran (System 12) provided poor
protection. Most of the damage to the organic coatings
in the immersed zone seemed to be caused by barnacles
and other marine organisms.

Organic With Cathodic Protection (System 5)

System 5 was a coal-tar epoxy coating with zinc
anodes. The organic coal-tar epoxy coating provided
adequate protection to the exposed pile in the atmos-
pheric zone. The immersed zone suffered severe loss
of the organic coating, but the steel pile was in ex-
cellent condition because of the cathodic protection
provided by the sacrificial zinc anodes.

9 “Carboglas 1601 Spray Grade (SG),” Product Data
Sheet (Saint Louis, MO: Carboline Co.). .




Meial-Filled (System 8}

The one system in the metal-filled class—aluminum
pigmented epoxy-tar—performed poorly in the im-
mersed and sand-swept zones. This was a three-coat
system in which two coats of epoxy-tar electrically
insulated, thus preventing the outer coat containing
the aluminum pigment from sacrifically protecting
the steel pile. The coating was perforated by barnacles,
which caused severe pitting in the immersed zone.

Organic Over Metal-Filled (Systems 10, 11, 18, 19,
20, 21 and 22)

The effectiveness of this coating class usually
depends on the metal-filled primers’ providing sacri-
ficial protection to any exposed steel in the immersed
zone of the piling. After 10 years of exposure, Systems
20, 10, and 18 were rated excellent; potential measure-
ments indicate that the zinc-rich primers of these
systems were still providing sacrificial protection. Sys-
tems 19, 11, 21 and 22 were all rated poor in the
immersed and sand-swept zones after 10-years’ ex-
posure. Potential measurements indicated that the
sacrificial metal-filled primers were gone; therefore, the
bare steel was no longer being protected.

Metallic (System 13}

The flame-sprayed aluminum coating of System 13
provided fair protection in the atmospheric zone,
where sacrificial aluminum is not advantageous. The
protection provided by this coating was rated good in
the immersed and sand-swept zones.

Organic Over Metallic (Systems 14, 15 and 16)

Overall, this classification was rated very good. In
the vinyl system, the aluminum flamesprayed under-
coat (System 14) provided better protection in the
immersed and sand-.wept zones than the zinc flame-
sprayed undercoat (System 16). Saran over zinc
flame-sprayed undercoat also provided very good
protection in the immersed and the sandswept zones.
Vinyl over flame-sprayed zinc provided excellent
protection in the atmospheric zone. Potential measure-
ments indicated that the flame-sprayed metals in
Systems 14 and 15 still offered sacrificial protection
after 10-years’ exposure.

Electrochemical Messurements
Potential Measurements

The potentials of the cathodically protected piles
were measured with respect to a copper-copper sulfate
reference cell (Table 4). The results of the 1972, 1976,
and 1981 inspections showed that no significant
changes in potentials have occurred, and that the
sacrificial anodes were providing protection in the
immersed zone.

CP1 Measurements

The CPI indicates the current required to cathod-
ically protect a pile’s bare area in the immersed zone.
The index reflects the amount of current required to
shift the potential of the pile in the cathodic direction
to attain —0.85 V with respect to a copper-copper
sulphate reference cell. Table S shows the CPI for the
coated piling at the LaCosta Island test site.

Table 4
Potential Measurements: Piling With Sacrificial Anode Cathodic Protection

System Voltage,
System Type Number 1972
Bare carbon 2A 1.080
steel (A36) with 2B 1.080
zinc anodes 2C 1.080
Bare carbon 3A 0.990
steel (A36) with 3B 0.990
aluminum anodes ac 0.995
C-200 coal-tar SA 1.080
epoxy on A36 SB 1.100
with zinc sC 1.090
anodes
Bare mariner UA 1.075
steel (690) with 4B 1.080
zinc anodes 4C 1.080
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Anode
Voltage, Coasumption

Voltage,

197 1981 @b/yn)
1.11 1.094 21
1.08 1.080 1.8
1.10 — -
1.09 1.043 1.7
1.08 1.035 1.5
1.08 - -
1.09 1.108 <0.1
1.10 1.108 <0.1
1.09 -_ -
110 1.091 wamn
1.10 1.090 22
1.10 — -




Table §
Cathodic Protection Indices of Coated Piling

AV
AA

andRow 1972 1973 1974 1975 1976 1981

4A 895 3.6l 1.6 114 172 041
4B 238 1.2 1.1 071 163 029
6A 700 221 13 076 154 050
6B 145 0930 068 059 189 0.34
7TA 13.0 9.10 7.2 567 506 223
7B 3.02 246 20 198 243 117
8A 21.7 3.76 1.7 092 172 0.60
8B 248 1438 1.1 0.59 459 0.28
9A 19.7 155 11.0 842 723 280
9B 197 194 1.6 146 211 0.87
HaA 030 0.14 a.t2 011 137 0.19
11B 0.26 0.14 011 0.1 130 0.29
12A 027 0.16 012 011 140 0.8
128 051 0.23 0.15 013 136 0.26
13A 385 517 54 469 4359 057
138 366 S.12 5.7 600 500 139
14A 645 3.23 0.2 1364 1630 6.00
14B 420 5.36 5.6 750 5.25 203
15A 052 0.79 081 1.13 234 200
1SB 043 0.59 0.75 107 254 026
16A 0.73 0.89 LS 211 349 205
168 099 0.94 0.13 197 469 0.0
17A 113 4.1} 29 147 2.04 0.58
178 227 1.88 1.3 1.03 174 048
18A 342 174 10.0 630 046 1.38
18B 247 22 1.6 130 191 064
19A 218 0.33 021 0.49 150 022
19B 098 0.28 0.17 016 132 017
-20A 70.80 46.90 21.0 23.08 16.85 0.0
20B 263 273 37 405 567 0.98
21A 536 390 240 4839 1600 0.22
21B 205 141 065 035 135 o0.18
22A 198 213 032 018 134 014
228 279 2.03 0.50 027 133 017
25A 154 5.00 1.7 1.07 1891 0.39
258 252 1.53 078 062 1.74 032
29A 1729 1250 100 792 769 580
298 244  2.38 2.0 214 288 192

A direct correlation exists between bare steel area
and the amount of current required to shift the bare
steel to a fixed potential. Since CPI is inversely pro-
portional to the change in current (Eq 1), a direct
correlation exists between the CPI and a bare steel
surface in water. A decrease in CPI indicates a larger
area of bare steel exposed to water, and is therefore
a measure of coating deterioration.

Plotting the cathodic protection indices versus time
on log-log plots (Figure 7) permits predicions of the
deterioration of the coatings over a tong period of
time. Deterioration of the coatirgs generally causes
a drop in CPI, as demonstrated by a negative slope.
However, some coatings, such as flame-sprayed metal-
lics, have a completely flat slope or a slightly positive
one, indicating formation of protective corrosion
products, such as aluminum oxide or zinc oxide.

Polarization Measurements

The corrosion rate or rate of metal loss is a function
of the average corrosion current density. The higher
the corrosion current density of a metal in water, the
higher the metal loss. The corrosion current densities—
based on Schwerdtfeger’s equation (Eq 2)-for bare
carbon steel (System 1) and bare mariner steel (System
23) were 14.2 and 16.2 mA/sq ft (152.7 and 174.2
mA/m?), respectively. The corrosion rates as measured
by Schwerdtfeger’s equation for bare carbon steel
(A36) and bare mariner stee) (A690) were 7.1 and 8
mils (0.18 and 0.2 mm) per year, respectively. I, and
I, were determined by extending the tangents of
linear portions of the polarization curves and deter-
mining their intersection, as shown in Figures 8 and 9.

Flange Thickness Profiles

Figures 10 through 15 give flange edge thickness
profiles for piles that were bare, bare with cathodic
protection, and coated with sacrificial anodes. The
flange thickness was measured 1 in. (254 mm) from
the edge, and reflected the corrosion on both surfaces
of the piling flange. The corrosion rates determined
from these measurements are 7 and 6 mils (0.179 and
0.15 mm) per year respectively for bare carbon (A36)
and bare mariner (A690) steel.

All piling of bare carbon and mariner steel showed
perforation of the web in the atmospheric zone. No
significant differences in corrosion rates were noted
between the bare carbon and mariner steel after
10-years’ exposure at the LaCosta Island test site.
The bare steel piles were severely corroded directly
above the high tide (splash) zone and just below the
low tide area. A zone of severe corrosion also was
found at or just below the piling’s mud: line. The
bare steel piling exhibited very little corrosion in the
embedded zone.

Using sacrificial zinc or aluminum anodes on bare
steel piling (Figures 12, 13, and 14) effectively reduced
the corrosion rate in the immersed and embedded
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Figure 7. Cathodic protection indices versus time.

Zones to less than 0.1 mil (0.003 mm) per year, but
had no effect on corrosion in the atmospheric and
splash zones.

Adding a coating (Figure 15) to a cathodically
protected system reduced the corrosion in the atmos-
pheric zone; anode consumption rates were also
reduced. A coated, cathodically protected system is
advantageous because the steel is protected when the
coating in the immersed zone is damaged.

4 CONCLUSIONS

1. The corresion rates—determined by flange thick-
ness messurements in the immersion zone—were 7

20

and 6 mils (0.179 and 0.15 mm) per year respectively
for bare carbon (A36) and bare mariner (690) steel.
Sacrificial zinc or aluminum anodes effectively reduced
corrosion in the immersed zone to less than 0.1 mil
(0.003 mm) per vear, (Adding sacrificial anodes to a
coated steel piling protects steel in the immersed zone
if the coating is damaged.)

2. The polyester glass flake coatirg (System 29) was
the top performer. Epoxies over zincrich primers
(Systems 20, 10 and 18) and vinylsealed, flame-
sprayed aluminum and zinc (Systems 14 and 16)
coatings also performed very well after 10-years'
exposure at the LaCosta Island test site. The results
are summarized in Table 3.
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APPENDIX:
CHARTS OF CORROSION BEHAVIOR

OF STEEL PILING AT
LACOSTA ISLAND
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